Skip to main content
Version: Next

Openai Chat Completion Client For Multimodal

*在线运行 vLLM 入门教程:零基础分步指南

源码 examples/online_serving/openai_chat_completion_client_for_multimodal.py

# SPDX-License-Identifier: Apache-2.0

""" 一个示例,展示如何使用 vLLM 部署多模态模型
并通过 OpenAI 客户端进行在线推理服务。

使用以下命令启动 vLLM 服务器:

(使用 Llava 进行单图像推理)
vllm serve llava-hf/llava-1.5-7b-hf --chat-template template_llava.jinja

(使用 Phi-3.5-vision-instruct 进行多图像推理)
vllm serve microsoft/Phi-3.5-vision-instruct --task generate \
--trust-remote-code --max-model-len 4096 --limit-mm-per-prompt image=2

(使用 Ultravox 进行音频推理)
vllm serve fixie-ai/ultravox-v0_5-llama-3_2-1b --max-model-len 4096
"""

import base64

import requests
from openai import OpenAI

from vllm.utils import FlexibleArgumentParser

# 修改 OpenAI 的 API key 和 API base, 使用 vLLM 的 API 服务器。
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
# 默认为 os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id


def encode_base64_content_from_url(content_url: str) -> str:
"""Encode a content retrieved from a remote url to base64 format."""

with requests.get(content_url) as response:
response.raise_for_status()
result = base64.b64encode(response.content).decode('utf-8')

return result


# 仅文本推理
def run_text_only() -> None:
chat_completion = client.chat.completions.create(
messages=[{
"role": "user",
"content": "What's the capital of France?"
}],
model=model,
max_completion_tokens=64,
)

result = chat_completion.choices[0].message.content
print("Chat completion output:", result)


# 单图像输入推理
def run_single_image() -> None:

## 在有效载荷中使用图像 URL
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this image?"
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
},
],
}],
model=model,
max_completion_tokens=64,
)

result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from image url:", result)

## 使用有效载荷中的 base64 编码图像
image_base64 = encode_base64_content_from_url(image_url)
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this image?"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
},
],
}],
model=model,
max_completion_tokens=64,
)

result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from base64 encoded image:", result)


# 多图像输入推理
def run_multi_image() -> None:
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What are the animals in these images?"
},
{
"type": "image_url",
"image_url": {
"url": image_url_duck
},
},
{
"type": "image_url",
"image_url": {
"url": image_url_lion
},
},
],
}],
model=model,
max_completion_tokens=64,
)

result = chat_completion_from_url.choices[0].message.content
print("Chat completion output:", result)


# 视频输入推理
def run_video() -> None:
video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4"
video_base64 = encode_base64_content_from_url(video_url)

## 在有效载荷中使用视频 URL
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this video?"
},
{
"type": "video_url",
"video_url": {
"url": video_url
},
},
],
}],
model=model,
max_completion_tokens=64,
)

result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from image url:", result)

## 在有效载荷中使用 base64编码视频
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this video?"
},
{
"type": "video_url",
"video_url": {
"url": f"data:video/mp4;base64,{video_base64}"
},
},
],
}],
model=model,
max_completion_tokens=64,
)

result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from base64 encoded image:", result)


# 音频输入推理
def run_audio() -> None:
from vllm.assets.audio import AudioAsset

audio_url = AudioAsset("winning_call").url
audio_base64 = encode_base64_content_from_url(audio_url)

# OpenAI-compatible schema (`input_audio`)
# openai 兼容架构 (`input_audio`)
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "input_audio",
"input_audio": {
# Any format supported by librosa is supported
# 支持 librosa 支持的任何格式
"data": audio_base64,
"format": "wav"
},
},
],
}],
model=model,
max_completion_tokens=64,
)

result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from input audio:", result)

# HTTP URL
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "audio_url",
"audio_url": {
# Any format supported by librosa is supported
# 支持 librosa 支持的任何格式
"url": audio_url
},
},
],
}],
model=model,
max_completion_tokens=64,
)

result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from audio url:", result)

# base64 URL
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "audio_url",
"audio_url": {
# Any format supported by librosa is supported
# 支持 librosa 支持的任何格式
"url": f"data:audio/ogg;base64,{audio_base64}"
},
},
],
}],
model=model,
max_completion_tokens=64,
)

result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from base64 encoded audio:", result)


example_function_map = {
"text-only": run_text_only,
"single-image": run_single_image,
"multi-image": run_multi_image,
"video": run_video,
"audio": run_audio,
}


def main(args) -> None:
chat_type = args.chat_type
example_function_map[chat_type]()


if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Demo on using OpenAI client for online serving with '
'multimodal language models served with vLLM.')
parser.add_argument('--chat-type',
'-c',
type=str,
default="single-image",
choices=list(example_function_map.keys()),
help='Conversation type with multimodal data.')
args = parser.parse_args()
main(args)