Skip to main content
Version: Next

Profiling

*在线运行 vLLM 入门教程:零基础分步指南

源码 examples/offline_inference/profiling.py

# SPDX-License-Identifier: Apache-2.0

import inspect
import json
import os
import sys
from argparse import RawTextHelpFormatter
from collections.abc import Generator
from dataclasses import asdict, dataclass
from typing import Any, Optional, TypeAlias

import torch
import tqdm

from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.profiler import layerwise_profile
from vllm.utils import FlexibleArgumentParser

BATCH_SIZE_DEFAULT = 1
PROMPT_LEN_DEFAULT = 256


@dataclass
class ProfileContext:
engine_args: EngineArgs
prompt_len: int
batch_size: int

# The profiler can run in 2 modes,
# 1. Run profiler for user specified num_steps
# 分析器能以 2 个模式运行,
# 1.为用户指定的 num_steps 运行 profiler
num_steps: Optional[int] = None
# 2. Run profiler until all requests complete
# 2.运行 profiler 直到所有请求完成
complete_num_requests_per_step: Optional[int] = None

save_chrome_traces_folder: Optional[str] = None


def get_dtype(dtype: str):
if dtype == "torch.float":
return torch.float
else:
return dtype


OutputLen_NumReqs_Map: TypeAlias = dict[int, int]
def compute_request_output_lengths(batch_size: int, step_requests: list[int]) \
-> OutputLen_NumReqs_Map:
"""
Given the number of requests, batch_size, and the number of requests
that each engine-step should process, step_requests, determine the
output lengths of the requests such that step_request is honoured.

Example:
if batch size = 128 and step_request = [128, 128, 96, 64, 32, 1]
then return,
{2 : 32, 3 : 32, 4 : 32, 5 : 31, 6 : 1}, meaning,
32 requests should have output length 2,
32 requests should have output length 3,
32 requests should have output length 4,
31 requests should have output length 5,
1 request should have output length 6.

Args:
batch_size (int): Number of requests submitted for profile. This is
args.batch_size.
step_requests (list[int]): step_requests[i] is the number of requests
that the ith engine step should process.

Returns:
OutputLen_NumReqs_Map : A dictionary with output-length as keys and the
number of requests required to have that output-length as values.
"""
"""
根据请求数量、batch_size 以及每个引擎步骤应处理的请求数 step_requests,
确定各请求的输出长度,以确保满足 step_requests 的要求。

示例:
若 batch_size = 128 且 step_requests = [128, 128, 96, 64, 32, 1]
则返回
{2: 32, 3: 32, 4: 32, 5: 31, 6: 1},表示:
应有 32 个请求的输出长度为 2,
32 个请求的输出长度为 3,
32 个请求的输出长度为 4,
31 个请求的输出长度为 5,
1 个请求的输出长度为 6。

Args:
batch_size (int): 提交分析的请求数量,对应 args.batch_size
step_requests (list[int]): step_requests[i] 表示第 i 个引擎步骤应处理的请求数

Returns:
OutputLen_NumReqs_Map: 字典类型,键为输出长度,值为对应该输出长度的请求数量
"""
ol_nr: OutputLen_NumReqs_Map = {}

# Number of request that are assigned an output-length
# 分配了输出长度的请求数
num_reqs_assigned: int = 0
num_steps: int = len(step_requests)

# sanity check. The first step (prefill-step), must process all requests.
# 理智检查。第一步 (预填充步骤) 必须处理所有请求。
assert step_requests[0] == batch_size

# Begin assignments from the last step.
# 从最后一步开始分配。
output_length: int = num_steps
for num_requests_at_step in reversed(step_requests):
if num_reqs_assigned == batch_size:
break

assert num_reqs_assigned < batch_size

# Remove the number of requests that have been determined
# to participate in this step and beyond.
# 删除已确定的请求数量
# 参加此步骤及以后。
num_reqs_unassigned_at_step = num_requests_at_step - num_reqs_assigned
assert num_reqs_unassigned_at_step >= 0

if num_reqs_unassigned_at_step > 0:
ol_nr[output_length] = num_reqs_unassigned_at_step
num_reqs_assigned += num_reqs_unassigned_at_step

output_length -= 1

# sanity checks.
# 理智检查。
assert sum(ol_nr.values()) == batch_size, \
("Number of requests in output-length assignment does not match "
f"batch-size.\n batch size {batch_size} - "
f"step requests {step_requests} - assignments {ol_nr}")

# Check that the output-length is in [1, num-steps]. Output length must be
# at least 1 as all requests must participate in the prefill-step.
# 检查输出长度是否在[1,numSteps]中。输出长度必须是
# 至少1个请求必须参与预填充步骤。
assert all(ol >= 1 and ol <= num_steps for ol in ol_nr), \
("Output lengths of requests should be in range "
f"[1, num-engine-steps].\n batch size {batch_size} - "
f"step requests {step_requests} - assignments {ol_nr}")

return ol_nr


def determine_requests_per_step(context: ProfileContext) -> list[int]:
"""
Determine number of requests each engine step should process.
If context.num_steps is set, then all engine steps process the
same number of requests and the output list is of length
context.num_steps.

If context.complete_num_requests_per_step is set, then each decode step
processes fewer and fewer requests until there are no requests to process.
In this case, the output list is as big as the number of steps
required to process all requests.

Args:
context: ProfileContext object.

Returns:
list[int]: Number of requests to process for all engine-steps.
output[i], contains the number of requests that the ith step
should process.
"""
"""
确定每个引擎步骤应处理的请求数量。
若设置了 context.num_steps,则所有引擎步骤处理相同数量的请求,
且输出列表的长度为 context.num_steps。

若设置了 context.complete_num_requests_per_step,则每个解码步骤
处理的请求数量逐次递减,直至没有待处理请求。
此时,输出列表的大小等于处理所有请求所需的步骤数。

Args:
context: ProfileContext 对象。

Returns:
list[int]: 所有引擎步骤应处理的请求数量列表。
output[i] 表示第 i 个步骤应处理的请求数量。
"""
if context.num_steps:
# All requests must run until num_engine_steps. This implies
# that their output lengths must be equal to num_engine_steps.
# 所有请求必须运行,直到 num_engine_steps 为止。这意味着
# 他们的输出长度必须等于 num_engine_steps。
return [context.batch_size] * context.num_steps

assert context.complete_num_requests_per_step and \
context.complete_num_requests_per_step > 0, \
(f"Expected a positive complete_num_requests_per_step argument."
f"Instead got {context.complete_num_requests_per_step}")

# We start dropping after the first decode step.
# 我们在第一个解码步骤之后开始掉落。
step_requests = [
context.batch_size, # prefill # 预填充
context.batch_size, # decode # 解码
]

num_running_requests = context.batch_size
num_running_requests -= context.complete_num_requests_per_step
while num_running_requests > 0:
step_requests.append(num_running_requests)
num_running_requests -= context.complete_num_requests_per_step

if step_requests[-1] != 1:
# have 1 request running at the last step. This is often
# useful
# 在最后一步有1个请求。这通常很有用
step_requests.append(1)

return step_requests


def run_profile(context: ProfileContext, csv_output: Optional[str],
json_output: Optional[str]):
print("Run profile with:")
for key, value in asdict(context).items():
print(f" {key} = {value}")

requests_per_step: list[int] = determine_requests_per_step(context)

ol_nr: OutputLen_NumReqs_Map = compute_request_output_lengths(
context.batch_size, requests_per_step)

num_steps_to_profile: int = len(requests_per_step)
max_output_len: int = max(ol_nr.keys())
assert max_output_len >= 1

# Create sampling params
# 创建采样参数
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
# max_tokens is set on a per-request basis.
# MAX_TOKENS 以每次要求设置。
max_tokens=None,
ignore_eos=True)

# Create LLM
# 创建 LLM
llm = LLM(**asdict(context.engine_args))
batch_size = context.batch_size
prompt_len = context.prompt_len

scheduler_config = llm.llm_engine.scheduler_config
max_model_len = llm.llm_engine.model_config.max_model_len
max_num_batched_tokens = scheduler_config.max_num_batched_tokens
max_num_seqs = scheduler_config.max_num_seqs

if batch_size * prompt_len > max_num_batched_tokens:
print(f"ERROR: chosen batch_size * prompt_len "
f"({batch_size} * {prompt_len} = {batch_size * prompt_len}) is "
f"larger than max_num_batched_tokens ({max_num_batched_tokens}) "
f"and therefore cannot be run in a single profile step, please "
f"choose a smaller batch size or prompt length, or increase "
f"--max-num-batched-tokens")
sys.exit(-1)
if batch_size > max_num_seqs:
print(
f"ERROR: chosen batch_size ({batch_size}) is larger than "
f"max_num_seqs ({max_num_seqs}) and therefore cannot be run in a "
f"single profile step, please choose a smaller batch size")
sys.exit(-1)
print("llm.llm_engine.model_config.max_model_len: ",
llm.llm_engine.model_config.max_model_len)
if prompt_len + max_output_len > llm.llm_engine.model_config.max_model_len:
print(f"ERROR: chosen prompt_len + max_output_len ({prompt_len} + "
f"{max_output_len} = {prompt_len + max_output_len}) is larger "
f"than the model's max_model_len ({max_model_len}), please "
f"choose a smaller prompt_len or max_output_len, or increase "
f"--max-model-len")
sys.exit(-1)

def add_requests():

def get_output_len_generator() -> Generator[int, Any, Any]:
for output_len, num_reqs in ol_nr.items():
for _ in range(num_reqs):
yield output_len

output_len_generator = get_output_len_generator()
for i in range(batch_size):
sampling_params.max_tokens = next(output_len_generator)
assert isinstance(sampling_params.max_tokens, int)

prompt_token_ids = torch.randint(
llm.llm_engine.model_config.get_vocab_size(),
size=(prompt_len, )).tolist()

llm.llm_engine.add_request(
request_id=f"seq{i}",
prompt={'prompt_token_ids': prompt_token_ids},
params=sampling_params)

def abort_requests():
for i in range(batch_size):
llm.llm_engine.abort_request(f"seq{i}")

# Warm up run
# 预热跑步
print("Warm up run ...")
add_requests()
llm.llm_engine.step() # Prefill
llm.llm_engine.step() # Decode
abort_requests()

print("Profile run ...")
add_requests()

with layerwise_profile() as prefill_prof:
llm.llm_engine.step() # First step is prefill

decode_profs = []
for _ in tqdm.tqdm(range(num_steps_to_profile - 1)):
num_running_seqs = llm.llm_engine.scheduler[
0].get_num_unfinished_seq_groups()
with layerwise_profile(
num_running_seqs=num_running_seqs) as decode_prof:
llm.llm_engine.step()
decode_profs.append(decode_prof)

decode_results_list = [prof.results for prof in decode_profs]
prefill_results = prefill_prof.results
has_decode = len(decode_results_list) > 0

LINE_WIDTH = 80
print("=" * LINE_WIDTH)
print(f"= Prefill Model Table "
f"(prompt_len={prompt_len}, batch_size={batch_size})")
print("=" * LINE_WIDTH)
print()
prefill_results.print_model_table()

if has_decode:
print()
print("=" * LINE_WIDTH)
print(f"= First Decode Step Model Table "
f"(prompt_len={prompt_len}, batch_size={batch_size})")
print("=" * LINE_WIDTH)
print()
decode_results_list[0].print_model_table()

print()
print("=" * LINE_WIDTH)
print(f"= Prefill Summary Table "
f"(prompt_len={prompt_len}, batch_size={batch_size})")
print("=" * LINE_WIDTH)
print()
prefill_results.print_summary_table()

if has_decode:
print()
print("=" * LINE_WIDTH)
print(f"= First Decode Step Summary Table "
f"(prompt_len={prompt_len}, batch_size={batch_size})")
print("=" * LINE_WIDTH)
print()
decode_results_list[0].print_summary_table()

if csv_output:
csv_filename_base = csv_output[:-4] \
if csv_output.endswith('.csv') else csv_output
prefill_results.export_model_stats_table_csv(
csv_filename_base + "_prefill_model_table.csv")
prefill_results.export_summary_stats_table_csv(
csv_filename_base + "_prefill_summary_table.csv")

if has_decode:
decode_results_list[0].export_model_stats_table_csv(\
csv_filename_base + "_decode_model_table.csv")
decode_results_list[0].export_summary_stats_table_csv(
csv_filename_base + "_decode_summary_table.csv")

if json_output:
cuda_devices = [
torch.cuda.get_device_properties(dev_idx)
for dev_idx in range(torch.cuda.device_count())
]

json_dict = {
"context": {
"python_version": f"{sys.version}",
"torch_version": f"{torch.__version__}",
"torch_cuda_version": f"{torch.version.cuda}",
"cuda_devices": f"{cuda_devices}",
**asdict(context)
},
"prefill": prefill_results.convert_stats_to_dict(),
}

if has_decode:
for idx, dr in enumerate(decode_results_list):
json_dict[f"decode_{idx + 1}"] = dr.convert_stats_to_dict()

# Add .json to json_output filename if it doesn't exist already.
# 如果尚不存在,则将.json 添加到 JSON_OUTPUT 文件名。
json_output_file = json_output if json_output.endswith(
'.json') else json_output + '.json'
with open(json_output_file, "w+") as f:
json.dump(json_dict, f, indent=2)
pass

if context.save_chrome_traces_folder is not None:
os.makedirs(context.save_chrome_traces_folder, exist_ok=True)
prefill_prof.profiler.export_chrome_trace(
context.save_chrome_traces_folder + "/prefill.json")
for idx, decode_prof in enumerate(decode_profs):
decode_prof.profiler.export_chrome_trace(
context.save_chrome_traces_folder + f"/decode_{idx + 1}.json")
print("Traces saved as prefill.json and decode_1.json, etc."
f" in folder {context.save_chrome_traces_folder}")


if __name__ == "__main__":
parser = FlexibleArgumentParser(description="""
Profile a model

example:
```
python examples/offline_inference/profiling.py \\
--model neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8 --batch-size 4 \\
--prompt-len 512 --max-num-batched-tokens 8196 --json Llama31-8b-FP8 \\
--enforce-eager run_num_steps -n 2
```

then you can use various tools to analyze the json output
terminal ascii tables:
```
python tools/profiler/print_layerwise_table.py \\
--json-trace Llama31-8b-FP8.json --phase prefill --table summary
```
or create matplotlib stacked bar charts:
```
python tools/profiler/visualize_layerwise_profile.py \\
--json-trace Llama31-8b-FP8.json \\
--output-directory profile_breakdown --plot-metric pct_cuda_time
```
""",
formatter_class=RawTextHelpFormatter)
parser.add_argument(
"--csv",
type=str,
default=None,
help="Export the results as multiple csv file. This should be the root "
"filename, will create <filename>_prefill_model_table.csv, "
"<filename>_prefill_summary_table.csv, "
"<filename>_decode_model_table.csv, and "
"<filename>_decode_summary_table.csv")
parser.add_argument(
"--json",
type=str,
default=None,
help="Export the results as a json file. This should be the filename")
parser.add_argument("--save-chrome-traces-folder",
type=str,
help="Save chrome traces for the prefill and decode "
"will save traces as prefill.json and decode_1.json, "
"etc. inside this folder")
parser.add_argument(
"--prompt-len",
type=int,
default=PROMPT_LEN_DEFAULT,
help=f"Length of the random prompt to use when profiling, all batched "
f"requests use the same prompt_len, default={PROMPT_LEN_DEFAULT}")
parser.add_argument("--batch-size",
type=int,
default=BATCH_SIZE_DEFAULT,
help=f"Number of requests to run as a single batch, "
f"default={BATCH_SIZE_DEFAULT}")
subparsers = parser.add_subparsers(dest="cmd")
run_num_steps_parser = subparsers.add_parser(
"run_num_steps",
help="This variation profiles n engine.step() invocations.")
run_num_steps_parser.add_argument(
'-n',
'--num-steps',
type=int,
help="Number of engine steps to profile.\n"
"Setting it to 1, profiles only the prefill step.\n"
"Setting it to 2, profiles the prefill and first decode step\n"
"Setting it to 3, profiles the prefill, 1st and 2nd decode steps\n"
"and so on ...")
run_to_completion_parser = subparsers.add_parser(
"run_to_completion",
help="This variation profiles all the engine.step() invocations"
"until the engine exhausts all submitted requests.")
run_to_completion_parser.add_argument(
'-n',
'--complete-num-requests-per-step',
type=int,
help=
"Complete complete_num_requests_per_step requests every decode step."
"For e.g., with batch_size 128 and complete_num_requests_per_step 32,"
"the profiler is run for 6 engine steps, with the steps processing, "
"128, 128, 96, 64, 32, 1 requests respectively.\n"
"Note that we tack-on a one-request step at the end as it is often "
"useful.")
EngineArgs.add_cli_args(parser)
args = parser.parse_args()
context = ProfileContext(
engine_args=EngineArgs.from_cli_args(args),
**{
k: v
for k, v in vars(args).items()
if k in inspect.signature(ProfileContext).parameters
})
run_profile(context, csv_output=args.csv, json_output=args.json)