Load Sharded State
源码 examples/offline_inference/load_sharded_state.py.
# SPDX-License-Identifier: Apache-2.0
"""
Validates the loading of a model saved with the sharded_state format.
This script demonstrates how to load a model that was previously saved
using save_sharded_state.py and validates it by running inference.
Example usage:
(First need to save a sharded_state mode)
python save_sharded_state.py \
--model /path/to/load \
--quantization deepspeedfp \
--tensor-parallel-size 8 \
--output /path/to/save/sharded/modele
python load_sharded_state.py \
--model /path/to/saved/sharded/model \
--load-format sharded_state \
--quantization deepspeedfp \
--tensor-parallel-size 8 \
--prompt "Hello, my name is" \
--max-tokens 50
"""
import dataclasses
from vllm import LLM, EngineArgs, SamplingParams
from vllm.utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
# Add engine arguments
EngineArgs.add_cli_args(parser)
# Override default load_format for clarity
parser.set_defaults(load_format="sharded_state")
# Add validation arguments
parser.add_argument("--prompt",
type=str,
default="Hello, world!",
help="Prompt for validation")
parser.add_argument("--max-tokens",
type=int,
default=100,
help="Maximum number of tokens to generate")
parser.add_argument("--temperature",
type=float,
default=0.7,
help="Sampling temperature")
parser.add_argument("--top-p",
type=float,
default=1.0,
help="Top-p sampling parameter")
return parser.parse_args()
def main():
args = parse_args()
engine_args = EngineArgs.from_cli_args(args)
print(f"Loading model from {engine_args.model} "
f"using format {engine_args.load_format}")
print(f"Tensor parallel size: {engine_args.tensor_parallel_size}")
# Load the model using engine args
llm = LLM(**dataclasses.asdict(engine_args))
# Prepare sampling parameters
sampling_params = SamplingParams(
temperature=args.temperature,
top_p=args.top_p,
max_tokens=args.max_tokens,
)
print("\nRunning inference:")
print(f"Prompt: {args.prompt}")
# Generate completion
outputs = llm.generate(args.prompt, sampling_params)
# Display generated text
print("\nGenerated outputs:")
for output in outputs:
generated_text = output.outputs[0].text
print("-" * 50)
print(f"Full output: {args.prompt}{generated_text}")
print("-" * 50)
if __name__ == "__main__":
main()