Disaggregated Prefill
源码 examples/offline_inference/disaggregated_prefill.py
# SPDX-License-Identifier: Apache-2.0
"""
该文件演示了分解预填充的示例用法
我们将启动 2 个 vLLM 实例 (Preill 的 GPU 0和 Decode 的 GPU 1) ,
然后将 KV 缓存在它们之间传递。
"""
import os
import time
from multiprocessing import Event, Process
from vllm import LLM, SamplingParams
from vllm.config import KVTransferConfig
def run_prefill(prefill_done):
# 我们将 GPU 0 用于预填充节点。
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 预填充节点接收两个请求,而解码节点接收到
# 三个请求。因此,解码节点只会接收 KV 缓存
# 请求 1 和 3。解码节点将使用请求的 KV 缓存 1
# 和 3,并根据要求进行预填充 2。
prompts = [
"Hello, my name is",
"Hi, your name is",
# The decode node will actually "prefill" this request.
# 解码节点实际上将"预填充"此请求。
"Tell me a very long story",
]
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=1)
# 使用 pyncclconnector 在 vLLM 实例之间传输 KV 缓存。
# 此实例是预填充节点 (kv_producer, rank 0)。
# KV 缓存传输的并行实例数设置为 2,
# 根据 PyncclConnector 的要求。
ktc = KVTransferConfig.from_cli(
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2}'
)
# 将 GPU 内存利用设置为0.8,用于40GB 显存的 A6000 GPU。
# 您可能需要调整值以适合您的 GPU。
llm = LLM(model="meta-llama/Meta-Llama-3.1-8B-Instruct",
kv_transfer_config=ktc,
max_model_len=2000,
gpu_memory_utilization=0.8)
llm.generate(prompts, sampling_params)
print("Prefill node is finished.")
prefill_done.set()
# 如果未完成解码节点,则保持预填充节点运行;
# 否则,脚本可能会过早退出,从而导致不完整的解码。
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
print("Script stopped by user.")
def run_decode(prefill_done):
# 我们将 GPU 1 用于解码节点。
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
prompts = [
"Hello, my name is",
"Hi, your name is",
"Tell me a very long story",
]
sampling_params = SamplingParams(temperature=0, top_p=0.95)
# 使用 PyNcclConnector 在 vLLM 实例之间传输 KV 缓存。
# 此实例是解码节点 (KV_Consumer, rank 1)。
# KV 缓存传输的并行实例数设置为2,
# 根据 PyNcclConnector 的要求。
ktc = KVTransferConfig.from_cli(
'{"kv_connector":"PyNcclConnector","kv_role":"kv_consumer","kv_rank":1,"kv_parallel_size":2}'
)
# 将 GPU 内存利用设置为 0.8,用于 40 GB 显存的 A6000 GPU
# 您可能需要调整值以适合您的 GPU。
llm = LLM(model="meta-llama/Meta-Llama-3.1-8B-Instruct",
kv_transfer_config=ktc,
max_model_len=2000,
gpu_memory_utilization=0.8)
# 等待生产者启动管道
print("Waiting for prefill node to finish...")
prefill_done.wait()
# 在设置 prefill_done 时,KV-CACHE 应该
# 转到此解码节点,因此我们可以开始解码。
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
if __name__ == "__main__":
prefill_done = Event()
prefill_process = Process(target=run_prefill, args=(prefill_done, ))
decode_process = Process(target=run_decode, args=(prefill_done, ))
# 开始预填充节点
prefill_process.start()
# 开始解码节点
decode_process.start()
# 解释完成后终止预填充节点
decode_process.join()
prefill_process.terminate()