Data Parallel
源码 examples/offline_inference/data_parallel.py
# SPDX-License-Identifier: Apache-2.0
"""
Usage:
用法:
Single node:
单节点:
python examples/offline_inference/data_parallel.py \
--model="ibm-research/PowerMoE-3b" \
--dp-size=2 \
--tp-size=2
Multi-node:
多节点:
Node 0 (assume the node has ip of 10.99.48.128):
python examples/offline_inference/data_parallel.py \
--model="ibm-research/PowerMoE-3b" \
--dp-size=2 \
--tp-size=2 \
--node-size=2 \
--node-rank=0 \
--master-addr=10.99.48.128 \
--master-port=13345
Node 1:
python examples/offline_inference/data_parallel.py \
--model="ibm-research/PowerMoE-3b" \
--dp-size=2 \
--tp-size=2 \
--node-size=2 \
--node-rank=1 \
--master-addr=10.99.48.128 \
--master-port=13345
"""
import os
from time import sleep
from vllm import LLM, SamplingParams
from vllm.utils import get_open_port
def main(model, dp_size, local_dp_rank, global_dp_rank, dp_master_ip,
dp_master_port, GPUs_per_dp_rank):
os.environ["VLLM_DP_RANK"] = str(global_dp_rank)
os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
os.environ["VLLM_DP_SIZE"] = str(dp_size)
os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)
# CUDA_VISIBLE_DEVICES for each DP rank is set automatically inside the
# engine processes.
# cuda_visible_devices 的每个 DP rank 都会自动设置
# 引擎过程。
# Sample prompts.
# 样本提示。
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
] * 100
# with DP, each rank should process different prompts.
# usually all the DP ranks process a full dataset,
# and each rank processes a different part of the dataset.
# 使用 DP,每个 rank 都应处理不同的提示。
# 通常所有 DP rank 完整的数据集,
# 并且每个 rank 都处理数据集的不同部分。
promts_per_rank = len(prompts) // dp_size
start = global_dp_rank * promts_per_rank
end = start + promts_per_rank
prompts = prompts[start:end]
if len(prompts) == 0:
# if any rank has no prompts to process,
# we need to set a placeholder prompt
# 如果任何 rank 都没有提示进行处理,
# 我们需要设置占位符提示
prompts = ["Placeholder"]
print(f"DP rank {global_dp_rank} needs to process {len(prompts)} prompts")
# Create a sampling params object.
# since we are doing data parallel, every rank can have different
# sampling params. here we set different max_tokens for different
# ranks for demonstration.
# 创建一个采样参数对象。
# 由于我们正在平行数据,因此每个 rank 都可以具有不同的
# 采样参数。在这里,我们为不同的 max_tokens 设置了不同的 max_tokens
# 示范 rank 。
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=[16, 20][global_dp_rank % 2])
# Create an LLM.
# 创建一个 LLM。
llm = LLM(model=model,
tensor_parallel_size=GPUs_per_dp_rank,
enforce_eager=True,
enable_expert_parallel=True)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
# 打印输出。
for i, output in enumerate(outputs):
if i >= 5:
# print only 5 outputs
# 仅打印5个输出
break
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"DP rank {global_dp_rank}, Prompt: {prompt!r}, "
f"Generated text: {generated_text!r}")
# Give engines time to pause their processing loops before exiting.
# 让引擎有时间在退出之前暂停处理循环。
sleep(1)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Data Parallel Inference")
parser.add_argument("--model",
type=str,
default="ibm-research/PowerMoE-3b",
help="Model name or path")
parser.add_argument("--dp-size",
type=int,
default=2,
help="Data parallel size")
parser.add_argument("--tp-size",
type=int,
default=2,
help="Tensor parallel size")
parser.add_argument("--node-size",
type=int,
default=1,
help="Total number of nodes")
parser.add_argument("--node-rank",
type=int,
default=0,
help="Rank of the current node")
parser.add_argument("--master-addr",
type=str,
default="",
help="Master node IP address")
parser.add_argument("--master-port",
type=int,
default=0,
help="Master node port")
args = parser.parse_args()
dp_size = args.dp_size
tp_size = args.tp_size
node_size = args.node_size
node_rank = args.node_rank
if node_size == 1:
dp_master_ip = "127.0.0.1"
dp_master_port = get_open_port()
else:
dp_master_ip = args.master_addr
dp_master_port = args.master_port
assert dp_size % node_size == 0, "dp_size should be divisible by node_size"
dp_per_node = dp_size // node_size
from multiprocessing import Process
procs = []
for local_dp_rank, global_dp_rank in enumerate(
range(node_rank * dp_per_node, (node_rank + 1) * dp_per_node)):
proc = Process(target=main,
args=(args.model, dp_size, local_dp_rank,
global_dp_rank, dp_master_ip, dp_master_port,
tp_size))
proc.start()
procs.append(proc)
exit_code = 0
for proc in procs:
proc.join(timeout=300)
if proc.exitcode is None:
print(f"Killing process {proc.pid} that "
f"didn't stop within 5 minutes.")
proc.kill()
exit_code = 1
elif proc.exitcode:
exit_code = proc.exitcode
exit(exit_code)