Skip to main content
Version: Next

推理输出

*在线运行 vLLM 入门教程:零基础分步指南

vLLM 支持推理模型,例如 DeepSeek R1,这些模型旨在生成包含推理步骤和最终结论的输出。

推理模型在其输出中返回一个额外的 reasoning_content 字段,该字段包含导致最终结论的推理步骤。其他模型的输出中不存在此字段。

支持的模型

vLLM 目前支持以下推理模型:

| 型号系列 | 解析器名称 | 结构化输出支持 | 工具调用 | | :-------------------------------------------------------------------------------------------------------------------------- | :---------- | :------------------------ | :------------------------ | --- | | DeepSeek R1 series  DeepSeek R1 系列 | deepseek_r1 | guided_json, guided_regex | guided_json、guided_regex | ❌ | | QwQ-32B | deepseek_r1 | guided_json, guided_regex | guided_json、guided_regex | ✅ |

快速入门

要使用推理模型,您需要在向聊天补全端点发出请求时指定 --enable-reasoning 和 --reasoning-parser 标志。--reasoning-parser 标志指定用于从模型输出中提取推理内容的推理解析器。

vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
--enable-reasoning --reasoning-parser deepseek_r1

接下来,向模型发出请求,该请求应在响应中返回推理内容。

from openai import OpenAI


# Modify OpenAI's API key and API base to use vLLM's API server.
# 修改 OpenAI 的 API 密钥和 API 基础 URL 以使用 vLLM 的 API 服务器。
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"


client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)


models = client.models.list()
model = models.data[0].id


# Round 1
# 第一轮
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(model=model, messages=messages)


reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content


print("reasoning_content:", reasoning_content)
print("content:", content)

reasoning_content 字段包含导致最终结论的推理步骤,而 content 字段包含最终结论。

流式聊天补全

推理模型也支持流式聊天补全。reasoning_content 字段在 聊天补全响应块 的 delta 字段中可用。

{
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": 1694268190,
"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"reasoning_content": "is",
},
"logprobs": null,
"finish_reason": null
}
]
}

OpenAI 的 Python 客户端库官方不支持流式输出中的 reasoning_content 属性。但客户端支持在响应中添加额外的属性。你可以使用 hasattr 来检查响应中是否存在 reasoning_content 属性。例如:

from openai import OpenAI


# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"


client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)


models = client.models.list()
model = models.data[0].id


messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
stream = client.chat.completions.create(model=model,
                                        messages=messages,
                                        stream=True)


print("client: Start streaming chat completions...")
printed_reasoning_content = False
printed_content = False


for chunk in stream:
    reasoning_content = None
    content = None
    # Check the content is reasoning_content or content
    if hasattr(chunk.choices[0].delta, "reasoning_content"):
        reasoning_content = chunk.choices[0].delta.reasoning_content
    elif hasattr(chunk.choices[0].delta, "content"):
        content = chunk.choices[0].delta.content


    if reasoning_content is not None:
        if not printed_reasoning_content:
            printed_reasoning_content = True
            print("reasoning_content:", end="", flush=True)
        print(reasoning_content, end="", flush=True)
    elif content is not None:
        if not printed_content:
            printed_content = True
            print("\ncontent:", end="", flush=True)
        # Extract and print the content
        print(content, end="", flush=True)


请记住在访问响应之前检查响应中是否存在 reasoning_content。您可以查看示例 

结构化输出

推理内容也可在结构化输出中找到。像 xgrammar 这样的结构化输出引擎将使用推理内容来生成结构化输出。

from openai import OpenAI
from pydantic import BaseModel


# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"


client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)


models = client.models.list()
model = models.data[0].id




class People(BaseModel):
    name: str
    age: int




json_schema = People.model_json_schema()


prompt = ("Generate a JSON with the name and age of one random person.")
completion = client.chat.completions.create(
    model=model,
    messages=[{
        "role": "user",
        "content": prompt,
    }],
    extra_body={"guided_json": json_schema},
)
print("reasoning_content: ", completion.choices[0].message.reasoning_content)
print("content: ", completion.choices[0].message.content)

工具调用

当工具调用和推理解析器都处于启用状态时,推理内容也可用。此外,工具调用仅分析 content 字段中的函数,而不分析 reasoning_content 中的函数。

from openai import OpenAI


client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")


tools = [{
    "type": "function",
    "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
                "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
            },
            "required": ["location", "unit"]
        }
    }
}]


response = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
    tools=tools,
    tool_choice="auto"
)


print(response)
tool_call = response.choices[0].message.tool_calls[0].function


print(f"reasoning_content: {response.choices[0].message.reasoning_content}")
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")

如何支持新的推理模型

您可以添加一个新的 ReasoningParser,类似于 vllm/entrypoints/openai/reasoning_parsers/deepseek_r1_reasoning_parser.py

# import the required packages
# 导入所需的包


from vllm.entrypoints.openai.reasoning_parsers.abs_reasoning_parsers import (
ReasoningParser, ReasoningParserManager)
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DeltaMessage)


# define a reasoning parser and register it to vllm
# the name list in register_module can be used
# in --reasoning-parser.
# 定义一个推理解析器并将其注册到 vLLM
# register_module 中的名称列表可以在
# --reasoning-parser 中使用。
@ReasoningParserManager.register_module(["example"])
class ExampleParser(ReasoningParser):
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)


def extract_reasoning_content_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
) -> Union[DeltaMessage, None]:
"""
Instance method that should be implemented for extracting reasoning
from an incomplete response; for use when handling reasoning calls and
streaming. Has to be an instance method because it requires state -
the current tokens/diffs, but also the information about what has
previously been parsed and extracted (see constructor)
实例方法,用于从未完成的响应中提取推理内容;
适用于处理推理调用和流式传输时。
必须是一个实例方法,因为它需要状态 -
当前的 token/差异,以及之前解析和提取的信息(参见构造函数)。
"""


def extract_reasoning_content(
self, model_output: str, request: ChatCompletionRequest
) -> Tuple[Optional[str], Optional[str]]:
"""
Extract reasoning content from a complete model-generated string.
从完整的模型生成字符串中提取推理内容。


Used for non-streaming responses where we have the entire model response
available before sending to the client.
用于非流式响应,其中我们在发送给客户端之前拥有完整的模型响应。


Parameters:
参数:
model_output: str
The model-generated string to extract reasoning content from.
model_output: str
要从中提取推理内容的模型生成字符串。


request: ChatCompletionRequest
The request object that was used to generate the model_output.
request: ChatCompletionRequest
用于生成 model_output 的请求对象。


Returns:
Tuple[Optional[str], Optional[str]]
A tuple containing the reasoning content and the content.
返回:
Tuple[Optional[str], Optional[str]]
包含推理内容和内容的元组。
"""

此外,要启用结构化输出,您需要创建一个类似于 中的新 Reasoner vllm/model_executor/guided_decoding/reasoner/deepseek_reasoner.py 。

@dataclass
class DeepSeekReasoner(Reasoner):
    """
    Reasoner for DeepSeek R series models.
    """
    start_token_id: int
    end_token_id: int


    start_token: str = "<think>"
    end_token: str = "</think>"


    @classmethod
    def from_tokenizer(cls, tokenizer: PreTrainedTokenizer) -> Reasoner:
        return cls(start_token_id=tokenizer.encode(
            "<think>", add_special_tokens=False)[0],
                   end_token_id=tokenizer.encode("</think>",
                                                 add_special_tokens=False)[0])


    def is_reasoning_end(self, input_ids: list[int]) -> bool:
        return self.end_token_id in input_ids
    ...

像 xgrammar 这样的结构化输出引擎将使用 end_token_id 来检查模型输出中是否存在推理内容,如果是,则跳过结构化输出。

最后,您可以使用 --enable-reasoning 和 --reasoning-parser 标志为模型启用推理。

vllm serve <model_tag> \
--enable-reasoning --reasoning-parser example

局限性

  • 推理内容仅适用于在线服务的聊天补全端点(/v1/chat/completions)。