多模态支持
本文档将引导您扩展基础模型,使其能够接受多模态输入。
1. 更新基础 vLLM 模型
假设您已经按照这些步骤在 vLLM 中实现了模型。进一步更新模型如下:
在 forward() 中为每个对应于多模态输入的输入张量保留一个关键字参数,如下例所示:
  def forward(
      self,
      input_ids: torch.Tensor,
      positions: torch.Tensor,
+     pixel_values: torch.Tensor,
  ) -> SamplerOutput:
- 更方便的是,您可以简单地将 
**kwargs传递给forward()方法,并从中检索多模态输入的关键字参数。 
实现 get_multimodal_embeddings(),该方法通过模型的多模态分词器运行多模态输入并返回嵌入。下面我们提供了一个典型实现模式的样板,但请根据您的需求进行调整。
class YourModelForImage2Seq(nn.Module):
    ...
    def _process_image_input(self, image_input: YourModelImageInputs) -> torch.Tensor:
        assert self.vision_encoder is not None
        image_features = self.vision_encoder(image_input)
        return self.multi_modal_projector(image_features)
    def get_multimodal_embeddings(
            self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
        # 验证多模态输入关键字参数
        image_input = self._parse_and_validate_image_input(**kwargs)
        if image_input is None:
            return None
        # 通过编码器和投影器运行多模态输入
        vision_embeddings = self._process_image_input(image_input)
        return vision_embeddings
重要
返回的
multimodal_embeddings必须是形状为(num_items, feature_size, hidden_size)的 3Dtorch.Tensor,或者是形状为(feature_size, hidden_size)的 2Dtorch.Tensor的 列表/元组,以便multimodal_embeddings[i]检索从请求的第i个多模态数据项(例如图像)生成的嵌入。
- 实现 
get_input_embeddings()以将multimodal_embeddings与来自input_ids的文本嵌入合并。如果模型的输入处理已正确实现(见下文),那么您可以利用我们提供的实用函数轻松合并嵌入。 
from .utils import merge_multimodal_embeddings
class YourModelForImage2Seq(nn.Module):
    ...
    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
    ) -> torch.Tensor:
        # `get_input_embeddings` 应该已经作为基础 vLLM 模型实现的要求之一实现。
        inputs_embeds = self.language_model.get_input_embeddings(input_ids)
        if multimodal_embeddings is not None:
            inputs_embeds = merge_multimodal_embeddings(
                input_ids=input_ids,
                inputs_embeds=inputs_embeds,
                multimodal_embeddings=multimodal_embeddings,
                placeholder_token_id=self.config.image_token_index)
        return inputs_embeds
- 完成上述步骤后,使用 
SupportsMultiModal接口更新模型类。 
+ from vllm.model_executor.models.interfaces import SupportsMultiModal
- class YourModelForImage2Seq(nn.Module):
+ class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
注意
模型类不必命名为
*ForCausalLM。查看 HuggingFace Transformers 文档 以获取一些示例。
2. 指定处理信息
接下来,创建 BaseProcessingInfo 的子类以提供与 HF 处理相关的基本信息。
输入项的最大数量
您需要重写抽象方法 get_supported_mm_limits() 以返回模型支持的每种模态的输入项的最大数量。
例如,如果模型支持任意数量的图像但每个提示仅支持一个视频:
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
    return {"image": None, "video": 1}
占位符特征 token 的最大数量
此外,重写抽象方法 get_mm_max_tokens_per_item() 以返回每种模态的每个输入项的占位符特征 token 的最大数量。
调用模型时,视觉编码器的输出嵌入被分配给包含占位符特征 token 的输入位置。因此,占位符特征 token 的数量应等于输出嵌入的大小。
基础示例:LLaVA
查看 HuggingFace 的 LlavaForConditionalGeneration 代码:
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L530-L544
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
n_image_features = image_features.shape[0] * image_features.shape[1]
if n_image_tokens != n_image_features:
    raise ValueError(
        f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
    )
special_image_mask = (
    (input_ids == self.config.image_token_index)
    .unsqueeze(-1)
    .expand_as(inputs_embeds)
    .to(inputs_embeds.device)
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
每张图像的占位符特征 token 数量为 image_features.shape[1]。image_features 是在 get_image_features 方法中计算的:
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L290-L300
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
if vision_feature_select_strategy == "default":
    selected_image_feature = selected_image_feature[:, 1:]
elif vision_feature_select_strategy == "full":
    selected_image_feature = selected_image_feature
else:
    raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
image_features = self.multi_modal_projector(selected_image_feature)
return image_features
我们可以推断 image_features.shape[1] 基于视觉塔(CLIPVisionModel 对于 llava-hf/llava-1.5-7b-hf 模型)的 image_outputs.hidden_states.shape[1]。此外,我们只需要序列长度(张量的第二维度)来获取 image_features.shape[1]。序列长度由 CLIPVisionTransformer 中的初始隐藏状态决定,因为注意力机制不会改变输出隐藏状态的序列长度。
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L1094-L1102
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
    inputs_embeds=hidden_states,
    output_attentions=output_attentions,
    output_hidden_states=output_hidden_states,
    return_dict=return_dict,
)
为了找到序列长度,我们查看 CLIPVisionEmbeddings 的代码:
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L247-L257
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))  # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
    embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
    embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
我们可以推断 embeddings.shape[1] == self.num_positions,其中
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L195-L196
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
总的来说,图像的占位符特征 token 数量可以计算为:
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    hf_config = self.get_hf_config()
    hf_processor = self.get_hf_processor()
    image_size = hf_config.vision_config.image_size
    patch_size = hf_config.vision_config.patch_size
    num_image_tokens = (image_size // patch_size) ** 2 + 1
    if hf_processor.vision_feature_select_strategy == "default":
        num_image_tokens -= 1
    return num_image_tokens
注意,图像 token 的数量不依赖于图像的宽度和高度。因此,我们可以使用任何图像大小计算最大图像 token 数量:
def get_image_size_with_most_features(self) -> ImageSize:
    hf_config = self.get_hf_config()
    width = height = hf_config.image_size
    return ImageSize(width=width, height=height)
def get_max_image_tokens(self) -> int:
    target_width, target_height = self.get_image_size_with_most_features()
    return self.get_num_image_tokens(
        image_width=target_width,
        image_height=target_height,
    )
因此,我们可以重写该方法为:
def get_mm_max_tokens_per_item(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> Mapping[str, int]:
    return {"image": self.get_max_image_tokens()}
注意
我们的实际代码更加抽象,以支持除 CLIP 之外的其他视觉编码器。
非连续特征 token:Fuyu
查看 HuggingFace 的 FuyuForCausalLM 代码:
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/modeling_fuyu.py#L311-L322
if image_patches is not None and past_key_values is None:
    patch_embeddings = [
        self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype))
        .squeeze(0)
        .to(inputs_embeds.device)
        for patch in image_patches
    ]
    inputs_embeds = self.gather_continuous_embeddings(
        word_embeddings=inputs_embeds,
        continuous_embeddings=patch_embeddings,
        image_patch_input_indices=image_patches_indices,
    )
批次中第 i 项的占位符特征 token 数量为 patch_embeddings[i].shape[0],与 image_patches[i].shape[0] 相同,即 num_total_patches。
与 LLaVA 不同,Fuyu 没有在建模文件中定义 patch 的数量。我们可以在哪里找到更多信息?考虑到模型输入来自 FuyuProcessor 的输出,让我们查看预处理文件。
图像输出是通过调用 FuyuImageProcessor.preprocess 然后调用 FuyuImageProcessor.preprocess_with_tokenizer_info 在 FuyuProcessor 中获得的。
在 FuyuImageProcessor.preprocess 中,图像被调整大小并填充到目标 FuyuImageProcessor.size,返回调整大小后的尺寸(但填充前)作为元数据。
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L541-L544
image_encoding = self.image_processor.preprocess(images, **output_kwargs["images_kwargs"])
batch_images = image_encoding["images"]
image_unpadded_heights = image_encoding["image_unpadded_heights"]
image_unpadded_widths = image_encoding["image_unpadded_widths"]
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L480-L
if do_resize:
    batch_images = [
        [self.resize(image, size=size, input_data_format=input_data_format) for image in images]
        for images in batch_images
    ]
image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]
if do_pad:
    batch_images = [
        [
            self.pad_image(
                image,
                size=size,
                mode=padding_mode,
                constant_values=padding_value,
                input_data_format=input_data_format,
            )
            for image in images
        ]
        for images in batch_images
    ]
在 FuyuImageProcessor.preprocess_with_tokenizer_info 中,图像根据此元数据被分割成 patch:
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L425
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
    image_input=tensor_batch_images,
    image_present=image_present,
    image_unpadded_h=image_unpadded_heights,
    image_unpadded_w=image_unpadded_widths,
    image_placeholder_id=image_placeholder_id,
    image_newline_id=image_newline_id,
    variable_sized=True,
)
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L638-L658
image_height, image_width = image.shape[1], image.shape[2]
if variable_sized:  # variable_sized=True
    new_h = min(
        image_height,
        math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
    )
    new_w = min(
        image_width,
        math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
    )
    image = image[:, :new_h, :new_w]
    image_height, image_width = new_h, new_w
num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
tensor_of_image_ids = torch.full(
    [num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
)
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
assert num_patches == patches.shape[0]
patch 的数量由 FuyuImageProcessor.get_num_patches 定义:
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L552-L562
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]
if image_height % patch_height != 0:
    raise ValueError(f"{image_height=} must be divisible by {patch_height}")
if image_width % patch_width != 0:
    raise ValueError(f"{image_width=} must be divisible by {patch_width}")
num_patches_per_dim_h = image_height // patch_height
num_patches_per_dim_w = image_width // patch_width
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
我们可以在 vLLM 中使用以下代码计算:
def get_num_image_patches(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    image_processor = self.get_image_processor()
    target_width = image_processor.size["width"]
    target_height = image_processor.size["height"]
    patch_width = image_processor.patch_size["width"]
    patch_height = image_processor.patch_size["height"]
    if not (image_width <= target_width and image_height <= target_height):
        height_scale_factor = target_height / image_height
        width_scale_factor = target_width / image_width
        optimal_scale_factor = min(height_scale_factor, width_scale_factor)
        image_height = int(image_height * optimal_scale_factor)
        image_width = int(image_width * optimal_scale_factor)
    ncols = math.ceil(image_width / patch_width)
    nrows = math.ceil(image_height / patch_height)
    return ncols * nrows
这些图像 patch 对应于占位符 token(|SPEAKER|)。然而,处理器还会插入换行 token(|NEWLINE|),如下所示:
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L654-L670
tensor_of_image_ids = torch.full(
    [num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
)
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
assert num_patches == patches.shape[0]
if variable_sized:
    # 现在使用 |NEWLINE| 终止每行
    tensor_of_image_ids = tensor_of_image_ids.reshape(-1, image_width // patch_width)
    newline_ids = torch.full(
        [tensor_of_image_ids.shape[0], 1],
        image_newline_id,
        dtype=torch.int32,
        device=image_input.device,
    )
    tensor_of_image_ids = torch.cat([tensor_of_image_ids, newline_ids], dim=1)
    tensor_of_image_ids = tensor_of_image_ids.reshape(-1)
因此,图像的 token 布局为:
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
...
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
这使得占位符 token 在提示中不连续。由于 vLLM 要求特征 token 是连续的,我们也将换行 token 视为特征 token。
因此,总的特征 token 数量为
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    image_processor = self.get_image_processor()
    target_width = image_processor.size["width"]
    target_height = image_processor.size["height"]
    patch_width = image_processor.patch_size["width"]
    patch_height = image_processor.patch_size["height"]
    if not (image_width <= target_width and image_height <= target_height):
        height_scale_factor = target_height / image_height
        width_scale_factor = target_width / image_width
        optimal_scale_factor = min(height_scale_factor, width_scale_factor)
        image_height = int(image_height * optimal_scale_factor)
        image_width = int(image_width * optimal_scale_factor)
    ncols = math.ceil(image_width / patch_width)
    nrows = math.ceil(image_height / patch_height)
    return (ncols + 1) * nrows
要计算最大图像 token 数量,请记住输入图像首先被调整大小以适应 image_processor.size。因此,在转换为 patch 之前,图像的最大可能尺寸等于 image_processor.size。
def get_image_size_with_most_features(self) -> ImageSize:
    image_processor = self.get_image_processor()
    return ImageSize(width=image_processor.size["width"],
                        height=image_processor.size["height"])
def get_max_image_tokens(self) -> int:
    target_width, target_height = self.get_image_size_with_most_features()
    return self.get_num_image_tokens(
        image_width=target_width,
        image_height=target_height,
    )
因此,我们可以重写该方法为:
def get_mm_max_tokens_per_item(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> Mapping[str, int]:
    return {"image": self.get_max_image_tokens()}
注意
我们的实际代码直接返回
ncols和nrows而不是总 token 数量。这是因为ncols和nrows用于指定特征 token 的布局(如本指南的第 4 步所示)。
3. 指定虚拟输入
接下来,继承 BaseDummyInputsBuilder 以构建用于 HF 处理和内存分析的虚拟输入。
用于内存分析
重写抽象方法 get_dummy_processor_inputs() 以构建用于内存分析的虚拟输入。此虚拟输入应导致模型的最坏情况内存使用,以便 vLLM 可以为其保留正确数量的内存。
假设内存使用量随着 token 数量的增加而增加,虚拟输入可以基于 get_mm_max_tokens_per_item() 的代码构建。
基础示例:LLaVA
利用第 2 步中实现的 get_image_size_with_most_features 方法:
def get_dummy_processor_inputs(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> ProcessorInputs:
    num_images = mm_counts.get("image", 0)
    processor = self.info.get_hf_processor()
    image_token = processor.image_token
    hf_config = self.get_hf_config()
    target_width, target_height = self.info.get_image_size_with_most_features()
    mm_data = {
        "image":
        self._get_dummy_images(width=target_width,
                               height=target_height,
                               num_images=num_images)
    }
    return ProcessorInputs(
        prompt_text=image_token * num_images,
        mm_data=mm_data,
    )
非连续特征 token:Fuyu
Fuyu 不需要在 HF 处理器的输入中出现图像占位符,因此无论图像数量如何,虚拟提示文本都为空。除此之外,此方法的逻辑与 LLaVA 非常相似:
def get_dummy_processor_inputs(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> ProcessorInputs:
    target_width, target_height = \
        self.info.get_image_size_with_most_features()
    num_images = mm_counts.get("image", 0)
    mm_data = {
        "image":
        self._get_dummy_images(width=target_width,
                                height=target_height,
                                num_images=num_images)
    }
    return ProcessorInputs(
        prompt_text="",
        mm_data=mm_data,
    )
4. 指定处理细节
接下来,创建 BaseMultiModalProcessor 的子类以填充有关 HF 处理的缺失细节。
另请参阅 >多模态数据处理
多模态字段
重写 _get_mm_fields_config() 以返回由 HF 处理器输出的与输入多模态项相关的张量模式。
基础示例:LLaVA
CLIPImageProcessor 的输出是一个形状为 (num_images, num_channels, image_height, image_width) 的简单张量:
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/image_processing_clip.py#L339-L345
images = [
    to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
    for image in all_images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
因此,我们按如下方式重写 _get_mm_fields_config() :
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        pixel_values=MultiModalFieldConfig.batched("image"),
    )
注意
我们的实际代码 还支持预计算的图像嵌入,可以通过
image_embeds参数传递给模型。
非连续特征 token:Fuyu
FuyuImageProcessor.preprocess_with_tokenizer_info 的 image_patches 输出连接了属于批次中每个项目的图像的 patch:
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L673-L679
        image_input_ids.append(tensor_of_image_ids)
        image_patches.append(patches)
    else:
        image_input_ids.append(torch.tensor([], dtype=torch.int32, device=image_input.device))
batch_image_input_ids.append(image_input_ids)
batch_image_patches.append(image_patches)
因此,FuyuImageProcessor 输出的 image_patches 的形状为 (1, num_images, num_patches, patch_width * patch_height * num_channels)。
为了支持像 LLaVA 中那样使用 MultiModalFieldConfig.batched(),我们通过重写 BaseMultiModalProcessor._call_hf_processor() 来移除额外的批次维度:
def _call_hf_processor(
    self,
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
) -> BatchFeature:
    processed_outputs = super()._call_hf_processor(
        prompt=prompt,
        mm_data=mm_data,
        mm_kwargs=mm_kwargs,
    )
    image_patches = processed_outputs.get("image_patches")
    if image_patches is not None:
        images = mm_data["images"]
        assert isinstance(images, list)
        # 原始输出:(1, num_images, Pn, Px * Py * C)
        # 新输出:(num_images, Pn, Px * Py * C)
        assert (isinstance(image_patches, list)
                and len(image_patches) == 1)
        assert (isinstance(image_patches[0], torch.Tensor)
                and len(image_patches[0]) == len(images))
        processed_outputs["image_patches"] = image_patches[0]
    return processed_outputs
注意
我们的实际代码对纯文本输入有特殊处理,以防止 HF 处理器产生不必要的警告。
这使我们能够按以下方式重写 _get_mm_fields_config() :
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(image_patches=MultiModalFieldConfig.batched("image"))
提示更新
重写 _get_prompt_updates() 以返回 PromptUpdate 实例的列表。
每个 PromptUpdate 实例指定由 HF 处理器执行的更新操作(例如:插入、替换)。
基础示例:LLaVA
查看 HF 的 LlavaProcessor:
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/processing_llava.py#L167-L170
prompt_strings = []
for sample in text:
    sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
    prompt_strings.append(sample)
它只是将每个输入 image_token 重复与占位符特征 token 数量(num_image_tokens)相等的次数。基于此,我们重写 _get_prompt_updates() 如下:
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
    hf_config = self.info.get_hf_config()
    image_token_id = hf_config.image_token_index
    def get_replacement(item_idx: int):
        images = mm_items.get_items("image", ImageProcessorItems)
        image_size = images.get_image_size(item_idx)
        num_image_tokens = self.info.get_num_image_tokens(
            image_width=image_size.width,
            image_height=image_size.height,
        )
        return [image_token_id] * num_image_tokens
    return [
        PromptReplacement(
            modality="image",
            target=[image_token_id],
            replacement=get_replacement,
        ),
    ]
Non-consecutive feature tokens: Fuyu
非连续特征 token:Fuyu
回顾第 2 步中的特征 token 布局:
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
...
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
我们定义了一个辅助函数直接返回 ncols 和 nrows:
def get_image_feature_grid_size(
    self,
    *,
    image_width: int,
    image_height: int,
) -> tuple[int, int]:
    image_processor = self.get_image_processor()
    target_width = image_processor.size["width"]
    target_height = image_processor.size["height"]
    patch_width = image_processor.patch_size["width"]
    patch_height = image_processor.patch_size["height"]
    if not (image_width <= target_width and image_height <= target_height):
        height_scale_factor = target_height / image_height
        width_scale_factor = target_width / image_width
        optimal_scale_factor = min(height_scale_factor, width_scale_factor)
        image_height = int(image_height * optimal_scale_factor)
        image_width = int(image_width * optimal_scale_factor)
    ncols = math.ceil(image_width / patch_width)
    nrows = math.ceil(image_height / patch_height)
    return ncols, nrows
基于此,我们可以初步定义替换 token 为:
def get_replacement(item_idx: int):
    images = mm_items.get_items("image", ImageProcessorItems)
    image_size = images.get_image_size(item_idx)
    ncols, nrows = self.info.get_image_feature_grid_size(
        image_width=image_size.width,
        image_height=image_size.height,
    )
    # `_IMAGE_TOKEN_ID` 对应于 `|SPEAKER|`
    # `_NEWLINE_TOKEN_ID` 对应于 `|NEWLINE|`
    return ([_IMAGE_TOKEN_ID] * ncols + [_NEWLINE_TOKEN_ID]) * nrows
然而,这并不完全正确。在调用 FuyuImageProcessor.preprocess_with_tokenizer_info 后,BOS token(<s>)也会被添加到提示中:
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L435
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
    image_input=tensor_batch_images,
    image_present=image_present,
    image_unpadded_h=image_unpadded_heights,
    image_unpadded_w=image_unpadded_widths,
    image_placeholder_id=image_placeholder_id,
    image_newline_id=image_newline_id,
    variable_sized=True,
)
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
    tokenizer=self.tokenizer,
    prompts=prompts,
    scale_factors=scale_factors,
    max_tokens_to_generate=self.max_tokens_to_generate,
    max_position_embeddings=self.max_position_embeddings,
    add_BOS=True,
    add_beginning_of_answer_token=True,
)
为了适应这种情况,您可以返回一个 PromptUpdateDetails 实例,而不是字符串,其中包含不同的 full 和 feature 属性:
hf_config = self.info.get_hf_config()
bos_token_id = hf_config.bos_token_id  # `<s>`
assert isinstance(bos_token_id, int)
def get_replacement_fuyu(item_idx: int):
    images = mm_items.get_items("image", ImageProcessorItems)
    image_size = images.get_image_size(item_idx)
    ncols, nrows = self.info.get_image_feature_grid_size(
        image_width=image_size.width,
        image_height=image_size.height,
    )
    image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
                    [_NEWLINE_TOKEN_ID]) * nrows
    return PromptUpdateDetails(
        full=image_tokens + [bos_token_id],
        features=image_tokens,
    )
最后,注意到 HF 处理器从分词后的提示中移除了 |ENDOFTEXT| token,我们可以搜索它以在字符串的开头进行替换:
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
    hf_config = self.info.get_hf_config()
    bos_token_id = hf_config.bos_token_id
    assert isinstance(bos_token_id, int)
    tokenizer = self.info.get_tokenizer()
    eot_token_id = tokenizer.bos_token_id
    assert isinstance(eot_token_id, int)
    def get_replacement_fuyu(item_idx: int):
        images = mm_items.get_items("image", ImageProcessorItems)
        image_size = images.get_image_size(item_idx)
        ncols, nrows = self.info.get_image_feature_grid_size(
            image_width=image_size.width,
            image_height=image_size.height,
        )
        image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
                        [_NEWLINE_TOKEN_ID]) * nrows
        return PromptUpdateDetails(
            full=image_tokens + [bos_token_id],
            features=image_tokens,
        )
    return [
        PromptReplacement(
            modality="image",
            target=[eot_token_id],
            replacement=get_replacement_fuyu,
        )
    ]
5. 注册处理器相关类
在定义了 BaseProcessingInfo(第 2 步)、BaseDummyInputsBuilder(第 3 步)和 BaseMultiModalProcessor(第 4 步)之后,使用 MULTIMODAL_REGISTRY.register_processor 装饰模型类,将它们注册到多模态注册表中:
  from vllm.model_executor.models.interfaces import SupportsMultiModal
+ from vllm.multimodal import MULTIMODAL_REGISTRY
+ @MULTIMODAL_REGISTRY.register_processor(YourMultiModalProcessor,
+                                         info=YourProcessingInfo,
+                                         dummy_inputs=YourDummyInputsBuilder)
  class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
注意
插入特征 token 而不进行替换
一些 HF 处理器直接插入特征 token,而不替换原始提示中的任何内容。在这种情况下,您可以在 _get_prompt_updates() 中使用 PromptInsertion 而不是 PromptReplacement。
示例:
- BLIP-2(在提示开头插入):vllm/model_executor/models/blip2.py
 - Florence2(在提示开头插入):vllm/model_executor/models/florence2.py
 - Molmo(在 
<|endoftext|>token 后插入):vllm/model_executor/models/molmo.py 
处理与多模态数据无关的提示更新
_get_prompt_updates() 假设每次应用提示更新都对应于一个多模态项。如果 HF 处理器执行额外的处理,无论有多少多模态项,您都应该重写 _apply_hf_processor_tokens_only(),以便处理后的 token 输入与在文本输入上应用 HF 处理器的结果一致。这是因为根据我们的设计,token 输入会绕过 HF 处理器。
示例:
- Chameleon(附加 
sep_token):vllm/model_executor/models/chameleon.py - Fuyu(附加 
boa_token):vllm/model_executor/models/fuyu.py - Molmo(应用未在其他地方定义的聊天模板):vllm/model_executor/models/molmo.py
 
自定义 HF 处理器
一些模型在 HF Hub 上没有定义 HF 处理器类。在这种情况下,您可以定义一个与 HF 处理器具有相同调用签名的自定义 HF 处理器,并将其传递给 _call_hf_processor()。
示例:
- DeepSeek-VL2: vllm/model_executor/models/deepseek_vl2.py
 - InternVL: vllm/model_executor/models/internvl.py
 - Qwen-VL: vllm/model_executor/models/qwen_vl.py